Researchers Demonstrate How to Control Liquid Crystal Patterns

When Lisa Tran set out to investigate patterns in liquid crystals, she didn’t know what to expect. When she first looked through the microscope, she saw dancing iridescent spheres with fingerprint-like patterns etched into them that spiraled and flattened as the solution they were floated in changed.

The sight was so beautiful that Tran, a graduate student in the Department of Physics and Astronomy, submitted a video of it to the Nikon Small World Competition and ended up winning fifth place. But the importance of the results stretch far beyond their aesthetic appeal, with possible applications in biosensing and energy harvesting.

Liquid crystals, fluids with aligned phases of constituent molecules, are used in everything from computer and television displays to mood rings. Since liquid crystals are made of rod-like molecules, they have special optical properties, such as changing color as they interact with electrical signals or light.

For this research, Tran confined the liquid crystals within droplets, creating shells floating in water. Tran and her advisor, Randall Kamien, the Vicki and William Abrams Professor in the Natural Sciences at Penn, described the droplets as “fancy bubbles.” To create patterns, Tran then added surfactants, or soapy molecules, to the water.

“The way that soap usually works,” Tran says, “is that you mix it with water and it forms small droplets with the oil to remove it from your hands or your plate.”

Because liquid crystals are similar to oil, the surfactants were attracted to the liquid crystal shells, causing the molecules to order in different ways and create striking patterns. The more soap she added to the solution, the more the patterns changed. Adding water caused the patterns to reverse.

Being able to control the patterns that form on the liquid crystals could be useful in creating patchy colloids, microscopic particles suspended in water that are functionalized, meaning one can attach molecules to specific spots on the particle.

Click here to read the full story.

Arts & Sciences News

Michael Jones-Correa and Sophia Rosenfeld Elected to American Academy of Arts & Sciences

They join three others from the University of Pennsylvania, selected as part of the Academy’s mission to convene leaders from “every field of human endeavor to examine new ideas, address issues of importance to the nation and the world, and work together.”

View Article >
Eva Del Soldato Awarded 2025-26 Rome Prize

She joins Sean Burkholder, of the Weitzman School of Design, and just 33 others in receiving the prestigious honor from the American Academy in Rome.

View Article >
Mark Trodden named Dean of Penn’s School of Arts & Sciences

A distinguished physicist and accomplished academic leader, Trodden will assume the role on June 1.

View Article >
Two Penn Arts & Sciences Faculty Named Guggenheim Fellows

Marcia Chatelain, Presidential Penn Compact Professor of Africana Studies, and Matthew Levendusky, Professor of Political Science, are among 198 in the U.S. and Canada selected for this 100th class of fellows.

View Article >
Penn ATLAS Shares 2025 Breakthrough Prize in Fundamental Physics

The team, which includes Joseph Kroll, Evelyn Thomson, Elliot Lipeles, Dylan Rankin, and Brig Williams from the Department of Physics and Astronomy, is part of an expansive collaboration studying high-energy collisions from the Large Hadron Collider.

View Article >
2025 School of Arts & Sciences Teaching Awards Announced

Penn Arts & Sciences annually recognizes faculty, lecturers, and graduate students for their exemplary teaching. This year’s honorees come from 10 departments and two programs.

View Article >